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1 Entanglement in quantum-many body sys-

tems

Entanglement is one of the fundamental phenomena in quantum mechanics
and implies that different degrees of freedom of a quantum system cannot be
described independently. Over the past decades it was realized that the en-
tanglement in quantum many-body system can give access to a lot of useful
information about quantum states. First, entanglement related quantities
provide powerful tools to extract universal properties of quantum states. For
example, scaling properties of the entanglement entropy help to characterize
critical systems [1, 2, 3, 4], and entanglement is the basis for the classifica-
tion of topological orders [5, 6]. Second, the understanding of entanglement
helped to develop new numerical methods to efficiently simulate quantum
many-body systems [7, 8]. In the following, we give a short introduction to
entanglement in 1D systems and then focus on the MPS representation.

Let us consider the bipartition of the Hilbert space H = HL ⊗ HR of
a 1D system as illustrated in Fig. 1(a), where HL (HR) describes all the
states defined on the left (right) of a given bond. In the so called Schmidt
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Figure 1: (a): Bipartition of a 1D system into two half chains. (b): Significant
quantum fluctuations in gapped ground states occur only on short length
scales. (c): 1D area law states make up a very small fraction of the many-
body Hilbert space but contain all gapped ground states. (d): Comparison
of the entanglement spectrum of the ground state of the transverse field Ising
model (g = 1.5) and a random state for a system consisting of N = 16 spins.

decomposition, a state |Ψ〉 ∈ H is decomposed as

|Ψ〉 =
∑
α

Λα|α〉L ⊗ |α〉R, |α〉L(R) ∈ HL(R), (1)

where the states {|α〉L(R)} form an orthogonal basis of HL (HR) and Λα ≥ 0.
The Schmidt decomposition is unique up to degeneracies and for a normalized
state |Ψ〉 we find that

∑
α Λ2

α = 1.
An important aspect is that the Schmidt decomposition gives direct in-

sight into the bipartite entanglement (i.e., the entanglement between degrees
of freedom inHL andHR ) of a state. In particular, only one term contributes
to the Schmidt decomposition if and only if L and R are not entangled. If
more than one term is required in the Schmidt decomposition to express the
state, the state is necessarily entangled. The relation between the Schmidt
decomposition and the entanglement can be made more concrete. The re-
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duced density matrix
ρR = TrL (|ψ〉〈ψ|) (2)

has the Schmidt states |α〉R as eigenstates and the Schmidt coefficients are
the square roots of the corresponding eigenvalues, i.e., ρR =

∑
α Λ2

α|α〉R〈α|R
(equivalently for ρL). The reduced density matrix of an entangled (pure)
quantum state is the density matrix of a mixed state defined on the subsys-
tem. Thus the entanglement entropy, which is defined as the von-Neumann
entropy of the reduced density matrix, measures the amount of entanglement.
In terms of the Schmidt values, it is given by

S = −
∑
α

Λ2
α log Λ2

α. (3)

The entanglement entropy S is a very useful measure to quantify the amount
of entanglement in a system for a given bipartition. Finally, the entanglement
spectrum {εα} [9] is defined in terms of the spectrum {Λ2

α} of the reduced
density matrix by Λ2

α = exp(−εα) for each α.

2 Area Law

A “typical” state in the Hilbert space shows a volume law, i.e., the entangle-
ment entropy grows proportionally with the volume of the partitions. In par-
ticular, it has been shown in Ref. [10] that a randomly drawn state |ψrandom〉
from the Hilbert space of a system of N sites with on-site Hilbert space
dimension d has an entanglement entropy of S ≈ N/2 log d − 1/2 for a bi-
partition into two parts of N/2 sites.

Ground states |ψ0〉 of gapped and local Hamiltonians follow instead an
area law, i.e., the entanglement entropy grows proportionally with the area of
the cut [11]. For a cut of an N-site chain as shown in Fig. 1(a) this implies that
S(N) is constant for N & ξ (with ξ being the correlation length). This can
be intuitively understood from the fact that a gapped ground state contains
only fluctuations within the correlations length ξ and thus only degrees of
freedom near the cut are entangled as schematically indicated in Fig. 1(b).
A rigorous proof of the area law in 1D is given in Ref. [12]. In this respect,
ground states are very special states and can be found within a very small
corner of the Hilbert space as illustrated in Fig. 1(c).

In slightly entangled states, only a relatively small number of Schmidt
states contribute significantly. This is demonstrated in Fig. 1(d) by compar-
ing the largest 20 Schmidt values of an area law and a volume law state for
a bipartition of an N = 16 chain into two half chains.
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As an example of an area law state, we consider here the ground state of
the transverse field Ising model

H = −
∑
n

σznσ
z
n+1 + gσxn, (4)

with σxn and σzn being the Pauli operators and g > 0. The Z2 symmetric model
with a phase transition at g = 1 has two very simple limits. For g = 0, the
ground state is twofold degenerate and given by the ferromagnetic product
state (symmetry broken) and at g →∞, the ground state is a product state
in which all spins are polarized (symmetric). For intermediate values of g,
the ground states are area law type entangled states (except at the critical
point). As shown in Fig. 1(d) for a representative example of g = 1.5,
the ground state has essentially the entire weight contained in a few Schmidt
states. Generic states fulfilling the area law show a similar behavior and thus
the above observation provides an extremely useful approach to compress
quantum states by truncating the Schmidt decomposition. In particular, we
can always truncate the Schmidt decomposition at some finite χ such that∥∥∥∥∥|ψ〉 −

χ∑
α=1

Λα|α〉L ⊗ |α〉R|

∥∥∥∥∥ < ε, ∀ε > 0. (5)

This particular property of area law states is intimately related to the MPS
representation of 1D quantum states as we will demonstrate in the next
section.

The situation is very different for a highly entangled (volume law) random
state: All the Schmidt values are roughly constant for all 2N/2 states and thus
only little weight in contained in the 20 dominant states (assuming an equal
weight, we find ∼ 1/2N/2 per Schmidt state).

3 Matrix Product States

A generic quantum state |Ψ〉 on a chain with N sites can be written in the
following MPS form [13, 14, 15]:

|Ψ〉 =
∑

j1,...,jN

A[1]j1A[2]j2 . . . A[N ]jN |j1, . . . , jN〉. (6)

Here, A[n]jn is a χn−1 × χn dimensional matrix and |jn〉 with jn = 1, . . . , d is
a basis of local states at site n. We call the indices of the matrices “bond”
indices. The matrices at the boundary, i.e., n = 1 and n = N , are vectors,
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Figure 2: Iterative conversion of a state |ψ〉 given by a rank-N tensor ψi1,...,iN
using successive Schmidt decompositions in a diagrammatic representations.
The horizontal lines represent the bond (Schmidt indices) α, β, γ, . . . and
the vertical lines the physical indices jn ∈ {1, . . . , d}. Connected lines be-
tween tensors denote summation over the corresponding indices (see text for
details).

that is χ0 = χN = 1, such that the matrix product in Eq. (6) produces a
number. The superscript [n] denotes the fact that for a generic state, each
site is represented by a different set of matrices.

In order to provide some intuition for the structure of MPS, we demon-
strate how to transform a generic quantum state

|ψ〉 =
∑

j1,j2,...,jN

ψj1,j2,...,jN |j1, j2, . . . jN〉 (7)

into an MPS. This can be done exactly by performing successively Schmidt
decompositions as shown diagrammatically in Fig. 2. This diagrammatic
representation, in which a rank-N tensor is represented by a symbol with N
legs, is very useful for representing tensor networks and related algorithms.
Connecting the legs among tensors symbolizes a tensor contraction, i.e., sum-
ming over the relevant indices.

We start by performing a Schmidt decomposition Eq. (1) of the state |ψ〉
into the first site and the rest such that

|ψ〉 =
d∑

α1=1

Λ[1]
α1
|α1〉[1]|α1〉[2,...,N ]. (8)

The states |α1〉[1] and |α1〉[2,...,N ] form an orthogonal basis for the left and

right part, respectively. The first matrix A
[i]j1
α1 in the MPS is the matrix

relating the left Schmidt states |α1〉[1] with the local states |j1〉 (describing

the local states on the first site) and is given by A
[1]j1
α1 = 〈j1|α1〉[1]. The
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resulting mixed representation of the state reads

|ψ〉 =
d∑

j1=1

d∑
α1=1

A[1]j1
α1

Λ[1]
α1
|j1〉|α1〉[2,...N ]. (9)

Next we proceed to the next bond and perform a Schmidt decomposition of
the state such that

|ψ〉 =
d2∑

α2=1

Λ[2]
α2
|α2〉[1,2]|α2〉[3,...,N ]. (10)

The second matrix A
[2]j2
α1α2 then relates the mixed basis states |α1〉[1]|j2〉 with

the left Schmidt states |α2〉[1,2] and is given by A
[2]j2
α1α2 =

[
〈α1|[1]〈j2|

]
|α2〉[1,2].

The resulting mixed representation of the state reads

|ψ〉 =
d∑

α1=1

d2∑
α2=1

d∑
j1,j2=1

A[1]j1
α1

A[2]j2
α1α2

Λ[2]
α2
|j1, j2〉|α2〉[3,...,N ]. (11)

This procedure can now be continued until reaching the right end of the chain.
We choose the last matrix A[N ]jn to relate the states ΛαN

|αn〉[N ] to the local
basis |jn〉. Then it is easy to see that we finally arrive at a representation of
the state that has exactly the form Eq. (6).

The caveat is that the matrix dimension increases exponentially as we
proceed toward the center of the chain. However, we can make an approx-
imation by neglecting the Schmidt states that have a very small Schmidt
values. For the ground state of the Ising model discussed above, we can find
a very good approximation of the ground state as MPS by keeping only a
maximal bond dimension of ∼20 with a truncation error that is of the order
of the machine precision (independent of the system size). The same picture
can be generalized to all states that fulfill an area law. On more general
grounds it had been proven that ground states of one dimensional gapped
systems can be efficiently approximated by an MPS [16, 17].

3.1 Canonical form

The representation Eq. (6) is not unique as an MPS with the transformed
matrices

Ã[n]in = Xn−1A
[n]inX−1

n (12)

represents the same state, where the Xn are χn × χn matrices. In the fol-
lowing, we will show how to fix this degree of freedom by introducing a
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Figure 3: (a): Diagrammatic representation of the tensors Γ and Λ. (b): MPS
formed by the tensors Γ and Λ. (c): Definition of the right Schmidt basis
states with respect to a partition on a bond with index α. (d): Condition
for the MPS to be in the canonical form. The transfer matrix TL of (16)
has been shaded. The upside-down triangles are the complex conjugate of
the Γ tensors. (e): If the state is in canonical form, then the dominant left
eigenvector of TL is the “identity matrix” with eigenvalue equal to 1. A
similar condition applies for the right transfer matrix TR.

convenient canonical form of the MPS in which the bond index corresponds
to the Schmidt decomposition.

Without a loss of generality, we write the matrices A[n]jn as a product of
χn−1 × χn matrices Γ[n]jn and positive, real, square diagonal matrices Λ[n],

|Ψ〉 =
∑

j1,...,jN

Γ[1]j1Λ[1]Γ[2]j2Λ[2] · · ·Λ[N−1]Γ[N ]jN |j1, . . . , jN〉, (13)

as pictorially illustrated in Figs. 3(a) and 3(b). Let us now motivate the
particular choice (13) for the MPS form. The freedom of choosing the MPS
can be used to define a “canonical form” of the MPS, following Ref. [18, 19].
As we will see later on, the canonical form has several very useful features.
Any bond n defines a bipartition of the system into sites L = {1, . . . , n} and
R = {n + 1, . . . , N} to the left and right of the bond. From the form of the
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MPS, we can define a set of χn wave functions |α〉[1,...,n] and |α〉[n+1,...,N ] to
the left/right of the bond [see Fig. 3(c)] such that state takes the form

|ψ〉 =
∑χ

α=1 Λ
[n]
α |α〉[1,...,n] ⊗ |α〉[n+1,...,N ]. (14)

The wave functions |α〉L/R are formed by multiplying all matrices to the
left and right, respectively. The MPS representation {Γ[1],Λ[1], . . . ,Γ[N ]} is
in canonical form if: For every bond, the set of Schmidt states along with
Λ[n] form a Schmidt decomposition of Ψ. In other words we must have
〈α′|α〉[1,...,n] = δα′α and 〈α′|α〉[n+1,...N ] = δα′α, along with

∑
(Λ

[n]
α )2 = 1 on

every bond. For finite systems, a generic MPS can be transformed into
canonical form by successively orthogonalizing the bonds starting from ei-
ther the left or right end of the chain [8]. A great advantage of the canonical
form is that local expectation values can be evaluated by only contracting
the tensors locally by using the orthogonality. Note that the MPS form
we obtained above by applying successively Schmidt decomposition provides
naturally the canonical form with A[n]jn = Λ[n−1]Γ[n]jn .

3.2 Infinite matrix product states

For infinite (N → ∞) and translationally invariant systems, the set of ma-
trices on any given site becomes the same, that is Γ[n]j = Γj and Λ[n] = Λ for
all integers n. Computing the overlaps 〈α′|α〉R would appear to require an
infinite tensor contraction. For an infinite MPS, the orthogonality condition
can be conveniently expressed in terms of the transfer matrix TR [illustrated
in Fig. 3(d)] defined as

TRαα′;ββ′ =
∑

j Γjαβ
(
Γjα′β′

)∗
ΛβΛβ′ , (15)

where “∗” denotes complex conjugation [19]. The transfer matrix TR relates
the overlaps defined on bond n with overlaps defined on bond n + 1. Given
that the right basis states |β〉[n+1]

R on bond n+ 1 are orthonormal, the states

|α〉[n]
R on bond n will also be orthonormal if T has a dominant right eigen-

vector δββ′(= 1) with eigenvalue η = 1, as illustrated in Fig. 3(e). For the
left set of states we define an analogous transfer matrix TL,

TLαα′;ββ′ =
∑

j ΛαΛα′ Γ
j
αβ

(
Γjα′β′

)∗
(16)

which must have a left eigenvector δαα′ with η = 1. These eigenvector cri-
teria are clearly necessary conditions for all bonds to be canonical; in fact,
assuming in addition that η = 1 is the dominant eigenvalue, they are suf-
ficient. The correlation functions in an MPS generically take the form of a
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sum of exponentials, with the slowest decaying exponential determined by
the second largest (in terms of absolute value) eigenvalue ε2 of the transfer
matrix. We define the correlation length of the MPS as

ξ = − 1

log |ε2|
, (17)

which is readily obtained using a sparse algorithm to find the eigenvalues
of the transfer matrix. A state is called pure if the dominant eigenvalue
is unique and mixed if it is degenerate. In the following discussions, we
will always assume that the state is pure (in fact every mixed state can be
uniquely decomposed into pure ones). An algorithm to explicitly transform
an arbitrary infinite MPS to the canonical form involves diagonalizing the
two transfer matrices TR and TL and is given in Ref. [20]. If the infinite
MPS is not translational invariant with respect to a one-site unit cell, all the
above can be simply generalized by considering a unit-cell of L sites which
repeats itself, e.g., in the case of a two site unit cel, the tensors are given by

Γ[2n] = ΓA, Λ[2n] = ΛA,
Γ[2n+1] = ΓB, Λ[2n+1] = ΛB,

(18)

for n ∈ Z. Reviews of MPSs as well as the canonical form can be found in
Refs. [21, 20, 19].

The infinite MPS representation in the canonical form has a number of
important advantages. First, using the properties of the transfer matrices
[Fig. 3(e)], it is very convenient to evaluate local expectation values as well
as correlation functions. Second, with the help of efficient algorithms such as
the infinite time evolving block decimation (iTEBD) [19] or infinite density
matrix renormalization group method (iDMRG) [22], the ground state of a
given Hamiltonian can be found in the thermodynamic limit. A discussion
of the two algorithms using the same notation as used in these notes can be
found in Ref. [23].

3.3 Examples of infinite MPS

To become more familiar with the infinite MPS representation, it is instruc-
tive to consider a few concrete examples.
(1) Neel state. The state | . . . ↑↓↑↓ . . . 〉 is a product state with a bond
dimension χ = 1 and a local Hilbert space of d = 2. The infinite MPS
representation is given by

Γ[2n],↑ = Γ[2n+1],↓ = 1

Γ[2n],↓ = Γ[2n+1],↑ = 0

Λ[2n] = Λ[2n+1] = 1.
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Figure 4: Diagrammatic representation of the AKLT states. The S = 1 sites
(grey circles) are decomposed into two S = 1/2 that are forming a singlet
with the neighboring site (ellipsoids).

Note that since the state is a simple product state, the matrices are actually
simply complex numbers. It is easy to see that a contraction of the infinite
MPS yields the desired Neel state. Furthermore, the corresponding transfer
matrices trivially obey the conditions for the canonical form.
(2) Spin-1 AKLT state. Affleck, Kennedy, Lieb, and Tasaki (AKLT)
constructed an S = 1 Hamiltonian for which the ground state has valence
bonds between all neighboring sites (see Fig. 4) [24]. The AKLT Hamiltonian
consists of a sum of projectors and reads

H =
∑
j

~Sj ~Sj+1 +
1

3
(~Sj ~Sj+1)2, (19)

where ~S are the spin-1 operators. The ground state in the thermodynamic
limit is unique and has a simple (χ = 2) infinite MPS representation

Γ[n],−1 =

√
4

3
σ+, Γ[n],0 = −

√
2

3
σz, Γ[n],1 = −

√
4

3
σ− (20)

Λ[n] =

√
1

2

(
1 0
0 1

)
. (21)

The state can be shown to be in the canonical form by diagonalizing the
corresponding left and right transfer matrices.
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Figure 5: In iTEBD each time step δt of a time evolution is approximated
using a Trotter-Suzuki decomposition, i.e., the time evolution operator is
expressed as a product of unitary two-site operators.

4 Algorithms

4.1 Infinite Time Evolving Block Decimation (iTEBD)

In the iTEBD algorithm, we are interested in evaluating the time evolution
of a quantum state:

|ψ(t)〉 = U(t)|ψ(0)〉. (22)

The time evolution operator U can either be U(t) = exp(−iHt) yielding a
real time evolution, or an imaginary time evolution U(τ) = exp(−Hτ). The
latter is used to find ground states of the Hamiltonian H through the relation

|ψGS〉 = lim
τ→∞

e−τH |ψ0〉. (23)

To achieve this, one makes use of the Trotter-Suzuki decomposition, which
approximates the exponent of a sum of operators, with a product of exponents
of the same operators. For example, the first order expansion reads

e(V+W )δ = eV δeWδ +O(δ2). (24)

Here V and W are operators, and δ is a small parameter. The second order
expansion similarly reads

e(V+W )δ = eV δ/2eWδeV δ/2 +O(δ3). (25)

To make use of these expressions, we assume that the Hamiltonian is a sum
of two-site operators of the form H =

∑
n h

[n,n+1] and decompose it as a sum

H = Hodd +Heven

=
∑
n odd

h[n,n+1] +
∑
n even

h[n,n+1]. (26)
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Figure 6: The iTEBD update scheme for a unitary two-site transformation
of a two-site unit cell MPS in canonical form (see Sec. 4.1 for details).

Each term Hodd and Heven consists of a sum of commuting operators.
We now divide the time into small time slices δt � 1 (the relevant time

scale is in fact the inverse gap) and consider a time evolution operator U(δt).
Using, as an example, the first order decomposition (24), the operator U(δt)
can be expanded into products of two-site unitary operators

U(δt) ≈

[∏
n odd

U [n,n+1](δt)

][ ∏
n even

U [n,n+1](δt)

]
, (27)

where

U [n,n+1](δt) = e−i δt h
[n,n+1]

(28)

This decomposition of the time evolution operator is shown pictorially in
Fig. 5. One notices that even if the underlying system has a translation
invariance of one site, the decomposition breaks this temporarily into a two
site translation symmetry. Therefore, one needs to keep at least two sets
of matrices ΓA,ΛA and ΓB,ΛB. The successive application of these two-site
unitary operators to an MPS is the main part of the algorithm.

Local unitary updates of an MPS. One of the advantages of the MPS
representation is that local transformations can be performed efficiently.
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Moreover, the canonical form discussed above is preserved if the transfor-
mations are unitary.[18]

A one-site unitary U simply transforms the tensors Γ of the MPS

Γ̃jαβ =
∑
j′

U j
j′Γ

j′

αβ. (29)

If we consider an infinite, translational invariant MPS, this transformations
implies the application of the unitary to all equivalent sites simultaneously.
In such case the entanglement of the wave-function is not affected and thus
the values of Λ do not change.

The update procedure for a two-site unitary transformation acting on
two neighboring sites is shown in Fig. 6. We focus on an update of an AB
bond between two neighboring sites n and n + 1 for an MPS with a unit
cell of size N = 2. The inequivalent BA bonds are updated similarly by
simply exchanging A and B. The generalization to an N -site unit cell is
straightforward. We first find the wave function in the basis spanned by the
left Schmidt states on bond n− 1 : n, the 1-site Hilbert space of sites n and
n + 1, and the right Schmidt states on bond n + 1 : n + 2, which together
form an orthonormal basis {|αn−1〉L, |jn〉, |kn+1〉, |γn+1〉R}. Calling the wave
function coefficients Θ, the state is expressed as

|ψ〉 =
∑
α,j,k,γ

Θjk
αγ|αn−1〉L|jn〉|kn+1〉|γn+1〉R. (30)

Using the definitions of |α〉L/R shown in Fig. 3(b), Θ is given by

Θjk
αγ =

∑
β

ΛB
αΓA,jαβ ΛA

βΓB,kβγ ΛB
γ . (31)

Writing the wave function in this basis is useful because it is easy to apply
the two-site unitary in step (ii) of the algorithm:

Θ̃jk
αγ =

∑
j′k′

U jk
j′k′Θ

j′k′

αγ . (32)

Next we have to extract the new tensors Γ̃A, Γ̃B and Λ̃A from the transformed
tensor Θ̃ in a manner that preserves the canonical form. We first ‘reshape’
the tensor Θ̃ by combining indices to obtain a dχ × dχ dimensional matrix
Θjα;kγ. Because the basis |αn−1〉L|jn〉 is orthonormal, as for the right, it
is natural to decompose the matrix using the singular value decomposition
(SVD) in step (iii) into

Θjα;kγ =
∑
β

Xjα;βDβYβ;kγ, (33)
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where X, Y are isometries and D is a diagonal matrix. The isometry X re-
lates the new Schmidt states |βn〉L to the combined bases |αn−1〉L|jn〉. Anal-
ogously, the Schmidt states for the right site are obtained from the matrix
Y . Thus the diagonal matrix D contains precisely the Schmidt values of the
transformed state, i.e., Λ̃A = D. The new tensors Γ̃A, Γ̃B can be extracted
directly from the matrices X, Y using the old matrices ΛB and the definition
of Θ in Eq. (31). In particular we obtain the new tensors in step (iv) by

Γ̃A,jαβ = (ΛB)−1
α Xjα;β, (34a)

Γ̃B,jβγ = Yβ;kγ(Λ
B)−1

γ . (34b)

After the update, the new MPS is still in the canonical form. Note that as
in the one-site update, if we apply the algorithm to an MPS, the update
is performed simultaneously to all matrices at equivalent bonds. Thus the
iTEBD algorithms exploits the translational invariance of the systems by
effectively performing an infinite number of parallel updates at each step.

The entanglement at the bond n, n + 1 has, in the update, changed and
the bond dimension increased to dχ. Thus the amount of information in the
wave function grows exponentially if we successively apply unitaries to the
state. To overcome this problem, we perform an approximation by fixing the
maximal number of Schmidt terms to χ. After each step, only the χ most
important states are kept, i.e., if we order the Schmidt states according to
their size we simply truncate the range of the index β in Eq. (33) to be 1 . . . χ.
This approximation limits the dimension of the MPS and the tensors Γ have
at most a dimension of d× χ× χ. Given that the truncated weight is small,
the normalization conditions for the canonical form will be fulfilled to a good
approximation. In order to keep the wave function normalized, one should

divide by the norm after the truncation, i.e., divide by N =
√∑

i,j,α,γ

∣∣Θij
αγ

∣∣2.

If we perform an imaginary time evolution of the state, the operator U is
not unitary and thus it does not conserve the canonical form. It turns out,
however, that the successive Schmidt decompositions assure a good approxi-
mation as long as the time steps are chosen small enough. One way to obtain
very accurate results is to decrease the size of the time steps successively. [19]

The simulation cost of this algorithm scales as d3χ3 and the most time
consuming part of the algorithm is the SVD in step (iii). If the Hamilto-
nian has symmetries, we can considerably accelerate this step by explicitly
conserving the resulting constants of motion. The anisotropic spin model
we study has for example a global U(1) symmetry and conserves the total
magnetization. Thus the matrix Θiα;jγ has a block-diagonal form and the
SVD can be performed in each block individually, yielding a considerable
speed up. See Refs. [25, 26] for details of an implementation of symmetries
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Figure 7: (a) An operator O acting on an entire chain expressed as a matrix
product operator. (b) A matrix product operator acting on a matrix product
state O|ψ〉. (c) The expectation value 〈ψ|O|ψ〉 expressed in an MPO form.

into the algorithm. Numerically, the algorithm can become unstable when
the values of Λ become very small since the matrix has to be inverted in
order to extract the new tensors in step (iv) of the algorithm. This problem
can be avoided by applying a slightly modified version of this algorithm as
introduced by Hastings in Ref. [27].

4.2 Matrix-Product Operators

The iDMRG algorithm explained in the next section relies on expressing the
Hamiltonian of the system in terms of matrix product operator (MPO). An
MPO is a natural generalization of an MPS to the space of operators. An
operator in an MPO form, acting on a chain with L sites, is given by

O =
∑
j1,...,jL
j′1,...,j

′
L

~vleftM
[1]j1j′1 M [2]j2j′2 · · ·M [L]jLj

′
L ~vright

×|j1, . . . , jL〉〈j′1, . . . , j′L| ,
(35)

where M jnj′n, are D×D matrices, and |jn〉, |j′n〉 represent local states at site
n, as before. At the boundaries we initiate and terminate the MPO by the
vectors ~vleft and ~vright.
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A pictorial representation of an MPO is given in Fig. 7(a). The notation
is very similar to the one for an MPS: the horizontal line corresponds to the
indices of the virtual dimension and the vertical lines represent the physical
states |jn〉 (bottom) and 〈j′n| top. The advantage of the MPO is that it can be
applied efficiently to a matrix product state as shown in Fig. 7(b). All local
Hamiltonians with only short range interactions can be represented using an
MPO of a small dimension D. Let us consider, for example, the MPO of the
anisotropic Heisenberg (XXZ) model in the presence of an on-site anisotropy.
The Hamiltonian is

HXXZ = J
∑
n

(
SxnS

x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1 + hSzn

)
, (36)

where Sαn , with α = x, y, z, is the α-component of the spin-S operator at site
n. ∆ is the XXZ anisotropic interaction parameter. Expressed as a tensor
product, the Hamiltonian takes the following form:

H = Sx ⊗ Sx ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Sx ⊗ Sx ⊗ · · · ⊗ 1+ . . .

+ Sy ⊗ Sy ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Sy ⊗ Sy ⊗ · · · ⊗ 1+ . . .

+ ∆Sz ⊗ Sz ⊗ 1⊗ · · · ⊗ 1+ . . .

+ [hSz]⊗ 1⊗ 1⊗ · · · ⊗ 1+ . . . (37)

The corresponding exact MPO has a dimension D = 5 and is given by

M [i] =


1 0 0 0 0
Sx 0 0 0 0
Sy 0 0 0 0

∆Sz 0 0 0 0
hSz Sx Sy Sz 1

 , (38)

with

~vleft =
(
0, 0, 0, 0, 1

)
, ~vright =

(
1, 0, 0, 0, 0

)T
. (39)

By multiplying the matrices (and taking tensor products of the operators),
one can easily see that the product of the matrices does in fact yield the
Hamiltonian (37). Further details of the MPO form of operators can be
found in Refs. [8, 22].

4.3 Infinite Density Matrix Renormalization Group

We now discuss the infinite Density Matrix Renormalization Group (iDMRG)
algorithm. Unlike iTEBD, the iDMRG is a variational approach to optimiz-
ing the MPS, but the algorithms have many steps in common. One advantage
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Figure 8: Pictorial representation of a contraction of the left and right en-
vironments. The boundaries are initiated by the tensors R0

αᾱ,a = δαᾱ~vright;a

and L0
αᾱ,a = δαᾱ~vleft;a.

of the iDMRG is that it does not rely on a Trotter-Suzuki decomposition of
the Hamiltonian and thus applies to systems with longer range interactions.
We assume only that the Hamiltonian has been written as an MPO. Secondly,
the convergence of the iDMRG method to the ground state is in practice much
faster. This is particularly the case if the gap above the ground state is small
and the correlation length is long.

The schematic idea for the iDMRG algorithm is as follows (see Fig. 9).
Like in iTEBD, the state at each step is represented by an MPS. We vari-
ationally optimize pairs of neighboring sites to minimize the ground state
energy 〈ψ|H|ψ〉, while keeping the rest of the chain fixed. To do so, at each
step we represent the initial wave function |ψ〉 using the two site tensor Θjk

αγ

(as previously defined in the iTEBD section), project the Hamiltonian into
the space spanned by the basis set |αjkβ〉, and use an iterative algorithm
(e.g. Lanczos) to lower the energy. Repeating this step for each pair, the
wave function converges to the ground state. For simplicity, only the details
of the algorithm with a unit cell of two sites, A and B, will be described
below.

Two-site update algorithm. We start by describing the update of an
AB bond between two neighboring sites n and n + 1 (the update on a BA
bond can be performed analogously by exchanging the role of A and B),
and return later to the initialization procedure. Step (i) is identical to the
first step in the iTEBD method; we contract the tensors for two neighboring
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Figure 9: A pictorial representation of an iDRMG iteration step update.
Refer to Sec. 4.3 for details.

sites to obtain the initial wave function Θjk
αγ. The orthonormal basis |αjβk〉

spans the variational space |ψ̃〉 = Θ̃jk
αγ|αjβk〉 of the update, in which we

must minimize the energy E = 〈ψ̃|H|ψ̃〉 in order to determine the optimal
Θ̃. Because H is written as an infinite MPO, it appears at first that to
evaluate the energy we will have to contract an infinite number of tensors
starting from left and right infinity, as illustrated in Fig. 7(c). For the sake
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of induction, however, suppose we have already done this contraction on the
left through bond n − 1 : n, and on the right through bond n + 1 : n + 2.
As illustrated in Fig. 8, the result of these contractions can be summarized
in two three leg tensors we call the left and right “environments.” The left
environment Lαᾱ,a has three indices: the MPO index a, and the indices α, ᾱ
corresponding to the bond indices of |ψ̃〉 and 〈ψ̃|. Likewise, on the right we
have Rγγ̄,c. Each bond of the system has a similarly defined environment; for
a unit cell of two, we have in total {LA, LB}, {RA, RB}. These environments
are nothing other than the MPO for the Hamiltonian projected into the space
of left and right Schmidt states about each bond.

With the environment in hand, we can project the Hamiltonian into the
orthonormal basis |αjγk〉; to minimize the energy of Θ we find the ground
state of the χ2d2 × χ2d2 “Hamiltonian”:

Hαjkγ;ᾱj̄k̄γ̄ =
∑
a,b,c

LBαᾱ,aM
j,j̄
abM

k,k̄
bc R

B
γγ̄,c. (40)

To find this ground state, we use an iterative procedure such as Lanczos
or Jacobi-Davidson at a cost of χ3Dd2 per multiplication, as illustrated in
step (ii) of Fig. 9, and obtain an improved guess for the wave function Θ̃
and energy E0. By using the initial wave function Θ as the starting vector
for the minimization procedure, convergence is typically reached with only a
couple of steps. This can be compared to the iTEBD optimization where we
obtain a new wave-function Θ̃ after applying the imaginary time-evolution
operator. As with iTEBD, the bond dimension grows as χ → dχ, which
we must truncate using SVD, shown in step (iii). It is important that the
left and right Schmidt basis about any bond remain orthogonal, because we
assume |αjβk〉 is an orthogonal basis at each step. Assuming this was the
case on bonds of type B, the isometry properties of the SVD matrices X
and Y imply that the orthogonality condition holds for the updated Schmidt
states defined about the central bond A, and hence will remain so throughout
the simulation. At this point, we have improved guesses for the matrices
Γ̃A/B, Λ̃A in step (iv).

The last step is to update the environment. At a minimum, we must
update the environments on the bond which we just optimized by simply
multiplying new tensors to the left and right as shown in Fig. 9 step (v):

L̃Aββ̄,b = LBαᾱ,aΛ
B
α Γ̃AαβjM

j,j̄
ab ΛB

ᾱ (Γ̃Aᾱβ̄j̄)
∗, (41a)

R̃A
ββ̄,b = RB

γγ̄,aΓ̃
B
βγkΛ

B
γM

k,k̄
ab (Γ̃Bγ̄β̄k̄)

∗ΛB
γ̄ . (41b)

This concludes the update on bond AB and we move over by one site, ex-
changing the roles of A and B, and repeat until convergence is reached.
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Initializing the environment. We now return to the problem of initial-
izing the algorithm. The initial MPS can be arbitrary (though it should be
in canonical form). A fine choice is a χ = 1 tensor product state which either
preserves or breaks the symmetries as desired. To form the initial environ-
ment, we suppose when computing the left/right environment that Ĥ is zero
to the left/right of the bond, which is captured by tensors of the form

R
[n]
αᾱ,a = δαᾱ~vright;a, (42a)

L
[n]
αᾱ,a = δαᾱ~vleft;a, (42b)

where the ~vleft/right are the MPO terminal vectors defined in Eq. (35). Re-
ferring to Eq. (39) as an example, recall that ~vright specifies the MPO index
such that no further operators will be inserted to its right; likewise, ~vleft

indicates no operators have been inserted to its left. Because all terms in
the Hamiltonian then act as the identity to the left/right of the bond, the
orthogonality of the Schmidt vectors implies that projecting the identity op-
erator into the left/right Schmidt basis trivially gives δαᾱ. When symmetry
breaking is expected it is helpful to further initialize the environments by
repeatedly performing the iDMRG update without performing the Lanczos
optimization, which builds up environments using the initial symmetry bro-
ken MPS.

Ground state energy from iDMRG. One subtlety of the above pre-
scription lies in the interpretation of the energy EGS obtained during the
diagonalization step. Is it the (infinite) energy of the infinite system? Us-
ing the initialization procedure just outlined, the Lanczos energy EGS after
the first step is the energy of the two-site problem. While we motivated
the environments as representing infinite half chains, it is more accurate to
assign them a length of 0 after the initialization procedure, and at each opti-
mization step the length of the left/right environment about the central bond
increases because a site has been appended. Keeping track of the length `R/L
of each environment (for a unit cell of two, each grows on alternate steps),
we see that the energy EGS corresponds to a system of size ` = `L + 2 + `R.
By monitoring the change in EGS with increased `, we can extract the en-
ergy per site. This is convenient for problems in which there is no few-site
Hamiltonian with which to evaluate the energy.

As for the iTEBD algorithm, we can achieve a considerable speed-up by
using the symmetries of the Hamiltonian, which requires assigning quantum
numbers to the tensors of the MPO in addition to the MPS.
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5 Example Code: iTEBD

The Python code below performs an imaginary time evolution of an MPS to
obtain an approximation of the ground state energy. The code can be down-
loaded at http://www.pks.mpg.de/~frankp/comp-phys/groundstate.py.

import numpy as np
from s c ipy . l i n a l g import expm

def i t ebd ( G l i s t , l l i s t ,U, chi max ) :
”Updates the G and s matr i ces us ing U and the TEBD pro toco l ”
d = G l i s t [ 0 ] . shape [ 0 ]

for ibond in [ 0 , 1 ] :
i a = np .mod( ibond , 2 ) ; ib = np .mod( ibond+1 ,2)
ch i1 = G l i s t [ i a ] . shape [ 1 ]
ch i3 = G l i s t [ ib ] . shape [ 2 ]

# Cons t ruc t t h e t a
theta = np . tensordot (np . diag ( l l i s t [ ib ] ) , G l i s t [ i a ] , axes =(1 ,1))
theta = np . tensordot ( theta , np . diag ( l l i s t [ i a ] , 0 ) , axes =(2 ,0))
theta = np . tensordot ( theta , G l i s t [ ib ] , axes =(2 ,1))
theta = np . tensordot ( theta , np . diag ( l l i s t [ ib ] , 0 ) , axes =(3 ,0))

# Apply U
theta = np . tensordot ( theta , np . reshape (U, ( d , d , d , d ) ) , axes = ( [ 1 , 2 ] , [ 0 , 1 ] ) )

# SVD
theta = np . reshape (np . t ranspose ( theta , ( 2 , 0 , 3 , 1 ) ) , ( d∗ chi1 , d∗ ch i3 ) )
X, Y, Z = np . l i n a l g . svd ( theta ) ; Z = Z .T
chi2 = np .min ( [ np .sum(Y>10.∗∗(−10)) , chi max ] )

# Truncate
l l i s t [ i a ]=Y[ 0 : ch i2 ] / np . sq r t (sum(Y[ 0 : ch i2 ]∗∗2 ) )
X=np . reshape (X[ : , 0 : ch i2 ] , ( d , chi1 , ch i2 ) )
G l i s t [ i a ]=np . t ranspose (np . tensordot (np . diag ( l l i s t [ ib ]∗∗(−1)) ,X, axes =(1 , 1 ) ) , ( 1 , 0 , 2 ) )
Z=np . t ranspose (np . reshape (Z [ : , 0 : ch i2 ] , ( d , chi3 , ch i2 ) ) , ( 0 , 2 , 1 ) )
G l i s t [ ib ]=np . tensordot (Z , np . diag ( l l i s t [ ib ]∗∗(−1)) , axes =(2 ,0))

def bond expectat ion va lue ( G l i s t , l l i s t ,O) :
”Expectat ion value f o r a s i t e operator ”
E=[]
for ibond in range ( 0 , 2 ) :

i a = np .mod( ibond , 2 ) ; ib = np .mod( ibond+1 ,2)
theta = np . tensordot (np . diag ( l l i s t [ ib ] ) , G l i s t [ i a ] , axes =(1 ,1))
theta = np . tensordot ( theta , np . diag ( l l i s t [ i a ] , 0 ) , axes =(2 ,0))
theta = np . tensordot ( theta , G l i s t [ ib ] , axes =(2 ,1))
theta = np . tensordot ( theta , np . diag ( l l i s t [ ib ] , 0 ) , axes =(3 ,0))
theta O = np . tensordot ( theta , np . reshape (O, ( d , d , d , d ) ) , axes = ( [ 1 , 2 ] , [ 0 , 1 ] ) ) . conj ( )
E. append (np . squeeze (np . tensordot ( theta O , theta , axes = ( [ 0 , 1 , 2 , 3 ] , [ 0 , 3 , 1 , 2 ] ) ) ) . item ( ) )

return (E)

######## Def ine t h e model and s imu l a t i o n parameters ######################
chi max=20; de l t a =0.1; N=2000;d=2; g=0.5

sx = np . array ( [ [ 0 . , 1 . ] , [ 1 . , 0 . ] ] )
sz = np . array ( [ [ 1 . , 0 . ] , [ 0 . , − 1 . ] ] )

H = −np . kron ( sz , sz ) + g∗np . kron ( sx , np . eye ( 2 , 2 ) )
U = expm(−de l t a ∗H)

############### I n i t i a l s t a t e : |0000> ###################################
Ga = np . z e ro s ( ( d , 1 , 1 ) , dtype=f loat ) ;Ga [ 0 , 0 , 0 ] = 1 .
Gb = np . z e ro s ( ( d , 1 , 1 ) , dtype=f loat ) ;Gb[ 0 , 0 , 0 ] = 1 .
G l i s t = [Ga,Gb]

l a = np . z e ro s ( 1 ) ; l a [ 0 ] = 1 .
lb = np . z e ro s ( 1 ) ; lb [ 0 ] = 1 .
l l i s t = [ la , lb ]

############### Perform the imaginary t ime e v o l u t i o n #######################
for s tep in range (1 , N) :

i t ebd ( G l i s t , l l i s t ,U, chi max )

print ”E=” , np .mean( bond expectat ion va lue ( G l i s t , l l i s t ,H) )
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5.1 Exercises

1. Try out the effect of changing the matrix dimensions χ, the imaginary
time step δ, and the number of steps N on the accuracy of the ground
state energy.

2. Use the code to sketch the phase diagram by plotting the magnetization
m as a function of the transverse field h. How is the convergence near
the phase transition? Try different values of χ.

3. Add a function to the code that constructs the transfer matrix TR.
By diagonalizing TR, you can extract the correlation length ξ from the
second largest eigenvalue using Eq. (17). How does ξ behave when
approaching the phase transition?
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